Comparison of Partial vs Full Admission for Small Turbines at Low Specific Speeds

Author:

Macchi Ennio1,Lozza Giovanni2

Affiliation:

1. Politecnico di Milano, Milan, Italy

2. University of Pavia, Pavia, Italy

Abstract

Several methods are available for the optimization of basic design parameters and the preliminary efficiency prediction of axial flow turbine stages. However, their application is often questionable for stages having low specific speed and/or small volume flow rates. In particular, the question may arise whether a better performance is achieved by a partial admission, impulse stage or by a full admission reaction stage having lower blade height. The paper firstly reviews the available loss correlation methods applicable to partial admission turbines, then a comparison is performed between the efficiency achievable by partial and full admission stages designed for the same operating conditions. The turbine design procedure for both options is fully automatized by an efficiency optimization method similar to the one described in previous authors’ papers. The results of calculations are presented in the paper as a function of similarity parameters (specific speed, size parameter, expansion ratio). It is found that the results obtained with different correlations are relatively similar for “conventional” turbine stages (low expansion ratio, moderate size parameters), while important differences take place for very small sizes and/or in presence of important compressibility effects. The presented results can be useful: 1) to decide whether selecting full or partial admission solutions; 2) to optimize the degree of admission and the other basic design parameters, and 3) to predict with reasonable accuracy the stage efficiency.

Publisher

American Society of Mechanical Engineers

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3