Influence of Interfacial Mixing on Thermal Boundary Conductance Across a Chromium/Silicon Interface

Author:

Hopkins Patrick E.1,Norris Pamela M.1,Stevens Robert J.2,Beechem Thomas E.3,Graham Samuel3

Affiliation:

1. Department of Mechanical and Aerospace Engineering, University of Virginia, P.O. Box 400746, Charlottesville, VA 22904-4746

2. Department of Mechanical Engineering, Rochester Institute of Technology, 76 Lomb Memorial Drive, Rochester, NY 14623-5604

3. GW Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 771 Ferst Drive NE, Atlanta, GA 30332

Abstract

The thermal conductance at solid-solid interfaces is becoming increasingly important in thermal considerations dealing with devices on nanometer length scales. Specifically, interdiffusion or mixing around the interface, which is generally ignored, must be taken into account when the characteristic lengths of the devices are on the order of the thickness of this mixing region. To study the effect of this interfacial mixing on thermal conductance, a series of Cr films is grown on Si substrates subject to various deposition conditions to control the growth around the Cr∕Si boundary. The Cr∕Si interfaces are characterized with Auger electron spectroscopy. The thermal boundary conductance (hBD) is measured with the transient thermoreflectance technique. Values of hBD are found to vary with both the thickness of the mixing region and the rate of compositional change in the mixing region. The effects of the varying mixing regions in each sample on hBD are discussed, and the results are compared to the diffuse mismatch model (DMM) and the virtual crystal DMM (VCDMM), which takes into account the effects of a two-phase region of finite thickness around the interface on hBD. An excellent agreement is shown between the measured hBD and that predicted by the VCDMM for a change in thickness of the two-phase region around the interface.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3