Combined Effects of Magnetic Field and Thermal Radiation on Fluid Flow and Heat Transfer of Mixed Convection in a Vertical Cylindrical Annulus

Author:

Li Ben-Wen1,Wang Wei2,Zhang Jing-Kui3

Affiliation:

1. Institute of Thermal Engineering, School of Energy and Power Engineering, Dalian University of Technology, Dalian 116024, China e-mails: ;

2. Key Laboratory of National Education Ministry for Electromagnetic Processing of Materials, Northeastern University, Shenyang 110819, China e-mail:

3. The State key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China e-mail:

Abstract

Magnetohydrodynamic (MHD, also for magnetohydrodynamics) mixed convection of electrically conducting and radiative participating fluid is studied in a differentially heated vertical annulus. The outer cylinder is stationary, and the inner cylinder is rotating at a constant angular speed around its axis. The temperature difference between the two cylindrical walls creates buoyancy force, due to the density variation. A constant axial magnetic field is also imposed to resist the fluid motion. The nonlinear integro-differential equation, which characterizes the radiation transfer, is solved by the discrete ordinates method (DOM). The MHD equations, which describe the magnetic and transport phenomena, are solved by the collocation spectral method (CSM). Detailed numerical results of heat transfer rate, velocity, and temperature fields are presented for 0≤Ha≤100, 0.1≤τL≤10, 0≤ω≤1, and 0.2≤εW≤1. The computational results reveal that the fluid flow and heat transfer are effectively suppressed by the magnetic field as expected. Substantial changes occur in flow patterns as well as in isotherms, when the optical thickness and emissivity of the walls vary in the specified ranges. However, the flow structure and the temperature distribution change slightly when the scattering albedo increases from 0 to 0.5, but a substantial change is observed when it increases to 1.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3