Hybrid Bonding for Ultra-High-Density Interconnect

Author:

Lu Mei-Chien1

Affiliation:

1. Monte Rosa Technology, Saratoga, CA 95070

Abstract

Abstract Hybrid bonding is the technology for interchip ultrahigh-density interconnect at pitch smaller than 10 μm. The feasibility at wafer-to-wafer level bonding with bond pad pitch of sub-0.5 μm has been demonstrated with scaling limitations under exploration beyond sub-0.4 μm. The heterogeneous integration of chiplets often requires die-to-wafer hybrid bonding for diverse chip stacking architectures. This overview emphasis on some main issues associated with hybrid bonding extending to die-to-wafer level. The hybrid bond pad structure design is a critical factor affecting sensitivity to overlay accuracy, copper recess or protrusion requirements, and performances. Cases of hybrid bonding schemes and pad structure designs are summarized and analyzed. Performance assessment and characterization methods are briefly overviewed. The scalability of pad pitch is addressed by analyzing the recent literature reports. Challenges of managing singulated dies for die-to-wafer bonding with direct placement or collective die-to-wafer bonding schemes under exploration are addressed. Nonetheless, industry collaboration for manufacturing equipment development and industry standards on handling chiplets from different technology nodes and different factories are highlighted.

Publisher

ASME International

Reference78 articles.

1. The Scaling of Cu-Cu Hybrid Bonding for High Density 3D Chip Stacking,2019

2. Novel Stacked CMOS Image Sensor With Advanced Cu2Cu Hybrid Bonding,2016

3. Cu-Cu Wiring: The Novel Structure of Cu-Cu Hybrid Bonding,2023

4. Impacts of Misalignment on 1 μm Pitch Cu-Cu Hybrid Bonding,2020

5. Evolution of Image Sensor Architectures With Stacked Device Technologies;IEEE Trans. Electron Devices,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3