Transient Surface Strains and the Deconvolution of Thermoelastic States and Boundary Conditions

Author:

Segall A. E.12,Engels D.2,Hirsh A.2

Affiliation:

1. Mem. ASME

2. Engineering Science and Mechanics, The Pennsylvania State University, 212 EES Building, University Park, PA 16803

Abstract

Abstract Thermoelastic states as they pertain to thermal-shock are difficult to determine since the underlying boundary conditions must be known or measured. For direct problems where the boundary conditions such as temperature or flux, are known a priori, the procedure is mathematically tractable with many analytical solutions available. Although this is more practical from a measurement standpoint, the inverse problem where the boundary conditions must be determined from remotely determined temperature and/or flux data are ill-posed and therefore inherently sensitive to errors in the data. Moreover, the limited number of analytical solutions to the inverse problem rely on assumptions that usually restrict them to timeframes before the thermal wave reaches the natural boundaries of the structure. Fortunately, a generalized solution based on strain-histories can be used instead to determine the underlying thermal excitation via a least-squares determination of coefficients for generalized equations for strain. Once the inverse problem is solved and the unknown boundary condition on the opposing surface is determined, the resulting polynomial can then be used with the generalized direct solution to determine the thermal- and stress-states as a function of time and position. For the two geometries explored, namely a thick-walled cylinder under an internal transient with external convection and a slab with one adiabatic surface, excellent agreement was seen with various test cases. The derived solutions appear to be well suited for many thermal scenarios provided that the analysis is restricted to the time interval used to determine the polynomial and the thermophysical properties that do not vary with temperature. While polynomials were employed for the current analysis, transcendental functions and/or combinations with polynomials can also be used.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Safety, Risk, Reliability and Quality

Reference27 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3