Boundary-Layer Transition in Accelerating Flows With Intense Freestream Turbulence: Part 2—The Zone of Intermittent Turbulence

Author:

Blair M. F.1

Affiliation:

1. United Technologies Research Center, East Hartford, Conn. 06108

Abstract

Hot-wire anemometry was employed to examine the laminar-to-turbulent transition of low-speed, two-dimensional boundary layers for two (moderate) levels of flow acceleration and various levels of grid-generated freestream turbulence. Flows with an adiabatic wall and with uniform-flux heat transfer were explored. Conditional discrimination techniques were employed to examine the zones of flow within the transitional region. This analysis demonstrated that as much as one-half of the streamwise-component unsteadiness, and much of the apparent anisotropy, observed near the wall was produced, not by turbulence, but by the steps in velocity between the turbulent and inter-turbulent zones of flow. Within the turbulent zones u′/v′ ratios were about equal to those expected for equilibrium boundary-layer turbulence. Near transition onset, however, the turbulence kinetic energy within the turbulent zones exceeded fully turbulent boundary-layer levels. Turbulent-zone power-spectral-density measurements indicate that the ratio of dissipation to production increased through transition. This suggests that the generation of the full equilibrium turbulent boundary-layer energy cascade required some time (distance) and may explain the very high TKE levels near onset.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3