A Multi-Body Dynamic Model Based on Bond Graph for Maritime Hydraulic Crane Operations

Author:

Chu Yingguang12,Æsøy Vilmar1

Affiliation:

1. Aalesund University College, Ålesund, Møre og Romsdal, Norway

2. Norwegian University of Science and Technology, Trondheim, Sør-Trøndelag, Norway

Abstract

This paper presents a bond graph model of a maritime crane lifting system comprised of a 3DOFs crane with three revolute joints, a winch, a segment of wire, and a pendulum load. The multi-body model contains the dynamic properties of the system and 3D animation of the operational behaviors. Lagrange’s method was used to derive the dynamic equations of the multi-body crane. Lagrange’s equations provide a clean elegant form for implementation using a special type of bond graph called IC-field. The model based on the bond graph contains interfaces to other domain models, e.g. input devices, control systems, hydraulic actuators, and sensors. Maritime crane operations are challenging due to the impact of heavy lifting, system stiffness and load sway resulted from the unstable working platform. The industry increasingly demands an overall virtual environment for modeling and simulation of maritime operations. The accomplishment will highly increase the efficiency and effectiveness of product and system design, new component and control algorithm testing, and operator training. The multi-body dynamic model is the core building block for modeling and simulation of maritime crane operations.

Publisher

American Society of Mechanical Engineers

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Co-simulation-Based System Using Vico for Marine Operation;Software Engineering and Formal Methods. SEFM 2022 Collocated Workshops;2023

2. Coupling of dynamic reaction forces of a heavy load crane and ship motion responses in waves;Ships and Offshore Structures;2021-04-10

3. Virtual prototyping for maritime crane design and operations;Journal of Marine Science and Technology;2017-11-25

4. An Object-Oriented Modeling Approach to Virtual Prototyping of Marine Operation Systems Based on Functional Mock-Up Interface Co-Simulation;Journal of Offshore Mechanics and Arctic Engineering;2017-11-16

5. Enhancement of Virtual Simulator for Marine Crane Operations via Haptic Device with Force Feedback;Haptics: Perception, Devices, Control, and Applications;2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3