Numerical and Theoretical Study on the Varying Speed Impact of Wedge Bodies on a Water Surface

Author:

Wen Xueliang1,Liu Peiqing1,Qu Qiulin1,Hu Tianxiang1

Affiliation:

1. School of Aeronautic Science and Engineering, Beihang University, Beijing 100191, China

Abstract

Abstract The varying speed impact of wedge bodies on a water surface is studied numerically and theoretically to provide a fast and accurate prediction of the pressure on the wedge surface and the motion of wedge bodies during the free impact, which can be a two-dimensional (2D) model for the strip theory or 2D + t strategy. The fluid is assumed to be incompressible, inviscid, with negligible gravity effect and surface tension effect. The computational fluid dynamics (CFD) method is based on the volume of fluid (VOF) method and global moving mesh (GMM) method. Various cases of a varying speed impact are shown for the CFD method, and a linear relationship between the pressure coefficient Cp and a dimensionless variable K is observed. To clearly explain the linear relationship between Cp and K, we follow the potential theory to derive the Cp expression based on several assumptions on the free surface drawn from the CFD results. The Cp expression and the motion of wedge bodies for a free impact derived from it are considered as an approximate solution for a varying speed impact. The approximate solution is compared with the existing analytical models and the published experimental data. The approximate solution can work well for different deadrise angles, while the existing analytical models can only be used for small deadrise angles. Good agreement is also obtained between the approximate solution and the experimental test results, including the time history of wedge acceleration and the pressure on the wedge surface.

Publisher

ASME International

Subject

Mechanical Engineering

Reference54 articles.

1. On the Shock Wave Velocity and Impact Pressure in High-Speed Liquid-Solid Impact;ASME J. Basic Eng.,1968

2. Slamming in Marine Applications;J. Eng. Math.,2004

3. Hull Slamming;ASME Appl. Mech. Rev.,2011

4. Slamming of Ships: Where Are we Now?;Philos. Trans. R. Soc. London A: Math., Phys. Eng. Sci.,2011

5. The Impact on Seaplane Floats During Landing,1929

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3