Large Eddy Simulation of the Layout Effects on Wind Farm Performance Coupling With Wind Turbine Control Strategies

Author:

Wu Chunlei1,Wang Qiang1,Yuan Renyu1,Luo Kun23,Fan Jianren23

Affiliation:

1. State Key Laboratory of Clean Energy Utilization, College of Energy Engineering, Zhejiang University, Hangzhou 310027, China

2. State Key Laboratory of Clean Energy Utilization, College of Energy Engineering, Zhejiang University, Hangzhou 310027, China;

3. Shanghai Institute for Advanced Study of Zhejiang University, Shanghai 200120, China

Abstract

Abstract Large eddy simulation (LES) coupling with wind turbine control strategies is newly developed to quantitatively study the layout effects on wind farm performance. The turbine rotor is parameterized with an actuator line method (ALM), and the five-region generator-torque control and the proportional-integral (PI) pitch control are newly introduced to regulate the operation of the wind turbine. First, a dynamic inflow boundary condition is designed to validate the current simulation framework. The validation results show that the simulated power curve agrees well with the real power curve of the wind turbine, and the maximum power error of the simulation only accounts for 5% of the rated power. Then, to study the layout effects, four kinds of wind farm arrangements are designed by varying the alignment method and the turbine spacing. The results show that the staggered arrangement and increasing the stream-wise spacing are beneficial to reduce the velocity deficit. The power comparison results show that the staggered arrangement has obvious advantages among the four cases, and it increases the capacity factor (CF) by 25% and improves the wind farm efficiency by about 50% compared with the aligned arrangement. The present simulation framework can be used to optimize the turbine layout for the potential wind farms.

Funder

China National Funds for Distinguished Young Scientists

China Postdoctoral Science Foundation

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3