Prediction for Global Whipping Responses of a Large Cruise Ship Under Unprecedented Sea Conditions Using an LSTM-Based Encoder–Decoder Model

Author:

Liu Ruixiang1,Li Hui1,Ong Muk Chen2,Zou Jian1

Affiliation:

1. Harbin Engineering University College of Shipbuilding Engineering, , Harbin 150001 , China

2. University of Stavanger Department of Mechanical and Structural Engineering and Materials Science, , Stavanger 4036 , Norway

Abstract

Abstract Global whipping responses contribute to a significant increase in vertical bending moments (VBM), making their accurate prediction crucial for ship safety. In this study, a long short-term memory (LSTM)-based encoder–decoder model is established to predict the whipping responses under varying sea states. The model is trained on a comprehensive dataset, which includes motion data and VBM history of a cruise ship under various sea conditions. This dataset is established via numerical simulation, ensuring a wide range of scenarios for the model to learn from. The efficacy of the LSTM encoder–decoder model in capturing global whipping responses is initially verified under a single sea condition case. This step confirms the model's ability to accurately predict vertical bending moments under known conditions. Subsequently, the model's performance under unprecedented sea conditions is examined. Given that the distribution of training data significantly influences the model's performance and the data from diverse sea conditions typically exhibit distinct data distribution, a mixed data training strategy is employed during the training process in this scenario. The results indicate that the LSTM encoder–decoder model effectively captures whipping responses. Furthermore, the mixed data training strategy significantly improves the model's prediction accuracy for global whipping responses under unprecedented sea conditions.

Funder

National Natural Science Foundation of China

Publisher

ASME International

Reference22 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3