Large-Eddy Simulation of a Mixed-Flow Pump at Off-Design Conditions

Author:

Posa Antonio1,Lippolis Antonio2,Balaras Elias3

Affiliation:

1. Department of Mechanical and Aerospace Engineering, The George Washington University, 800 22nd Street, Washington, DC 20052 e-mail:

2. Professor Dipartimento di Meccanica, Matematica e Management, Politecnico di Bari, Viale Japigia 182, Bari 70126, Italy e-mail:

3. Professor Department of Mechanical and Aerospace Engineering, The George Washington University, 800 22nd Street, Washington, DC 20052 e-mail:

Abstract

The flow through turbopumps is characterized by highly unsteady phenomena at part load conditions, involving large separation and generation of vortical structures. This behavior is strongly dependent on the interaction between rotating and steady parts, which is significantly modified, compared to the one at the design flow rate. Therefore, at off-design conditions, eddy-resolving computations are more suitable to analyze the complex physics occurring inside turbomachinery channels. In this work the large eddy simulation (LES), coupled with an immersed-boundary (IB) method, is utilized to study a mixed-flow pump at a reduced flow rate, equivalent to 40% of the nominal one. The present approach has been already validated in a previous study, where a satisfactory agreement with two-dimensional (2D) particle image velocimetry (PIV) experiments has been shown at design conditions. In this paper a comparison with the LES results at the optimal flow rate is also proposed, in order to understand the important modifications of the flow occurring at part loads.

Publisher

ASME International

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3