Experimental and Numerical Studies of Natural Convection in Trapezoidal Cavities

Author:

Lam S. W.1,Gani R.1,Symons J. G.2

Affiliation:

1. Department of Mechanical Engineering, Monash University, Clayton, Victoria 3168, Australia

2. Division of Construction and Engineering, Commonwealth Scientific and Industrial Research Organisation, Highett, Victoria 3190, Australia

Abstract

Natural convection heat transfer has been studied experimentally and numerically for horizontal prismatic cavities of trapezoidal section having a hot horizontal base, a cool inclined top, and insulated vertical walls. Experimental results are presented for a cavity with width-to-mean height ratio of 4, Rayleigh numbers (based on the mean cavity height) from 103 to 107, and top surface inclinations from 0 to 25 deg to the horizontal. For a given top surface inclination, the Nusselt–Rayleigh relationship follows the usual trend, but with an interesting anomaly, in which higher Nusselt numbers than expected are obtained in the range 8 × 103 < Ra < 2 × 105 for inclinations of 0 and 5 deg. Overall, as the inclination of the top surface is increased, the Nusselt number decreases, an effect that becomes greater at higher angles. The proportions of convective heat flow rate into the high side and low side of the cavity were measured and show distinct maxima at particular Rayleigh numbers (which are independent of the top surface inclination angle). The equation Nu = 0.168 [Ra (1 + cos θ)/2]0.278 [(1 − cos θmax)/(cos θ − cos θmax)]−0.199 correlates the experimental results to within 6.9 percent for the ranges 4 × 103 < Ra < 107 and 0 deg ≤ θ ≤ 25 deg, apart from the anomalous region previously indicated. It is suggested that this correlation applies for A ≥ 4. The numerical model uses a false transient ADI finite difference scheme to solve the governing two-dimensional vorticity and energy transport equations. Nusselt numbers computed by the model are in good agreement with the experimental values. The convective flow patterns generated by the model exhibit changes in number and in size of cells for different Rayleigh numbers and different top surface inclinations.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 45 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3