AP1000® Passive Core Cooling System Performance Following an Extended Station Blackout Event

Author:

Wright Richard F.1,Swantner Stephen1,Swartz Matthew M.1,Lojek John1,Song Yong Jae1,Kindred T. A.1

Affiliation:

1. Westinghouse Electric Company, Cranberry Township, PA

Abstract

As an advanced Gen III+ plant with passive safety systems, the AP1000® plant is uniquely equipped to handle an extended station blackout (SBO) event similar to what occurred at the Fukushima-Daiichi plants in March of 2011. These passive systems have been designed to maintain core cooling for up to 72 hours following all design basis events without the need for AC power or operator action. These core and containment cooling systems self-actuate such that even DC power is not required for their actuation. The Fukushima-Daiichi event demonstrated the effectiveness and desirability of the AP1000 systems. The AP1000 plant, like other pressurized water reactors (PWRs), is provided with defense-in-depth active systems, such as auxiliary feed water pumps, to remove decay heat using the steam generators in the event that offsite power is lost. During an SBO the diesel generators powering this active equipment would not be available. In the event of an SBO the safety-grade heat removal function would be accomplished by the passive residual heat removal (PRHR) heat exchanger (HX) located in the in-containment refueling water storage tank (IRWST). The PRHR HX is designed to remove decay heat from the reactor coolant system (RCS) to the water in the IRWST, which increases in temperature and eventually boils. Steam from the IRWST is vented to the containment atmosphere and actuates the passive containment cooling system (PCS), which is used to apply water to the outside of the steel containment vessel and passively remove heat via evaporation to the environment. Steam that is condensed on the inside surface of the containment vessel forms a water film that flows down the containment wall and is returned to the IRWST using a system of water collection gutters and piping. The PCS is sized to remove reactor decay heat for 72 hours without the need for operator action. Effective operation of the PRHR heat exchanger and PCS to remove decay heat from the reactor core to the environment depends on the ability to maintain water in the IRWST. Condensate that is not collected and returned to the IRWST is lost into the containment sump. There are several possible sources of loss. At the start of IRWST boiling, all containment structures will condense steam until their surface temperature approaches the steam temperature. This process is dependent on the heat capacity of these structures, and all condensation formed on these structures is considered lost. Since the containment wall is cooled by the PCS operation, condensation continues on the inside surface of the containment throughout the event. There are areas on the containment wall where condensate could be lost including the region at the top of the dome where the surface is nearly horizontal, and areas where weld seams and other obstructions could strip off some condensate film. To determine the coping time limits following an extended SBO, it is necessary to characterize these condensate losses. A Phenomena Identification and Ranking Table (PIRT) process was conducted to determine the important phenomena associated with the return of condensate to the IRWST. This PIRT process identified the need for further experimentation to quantify the losses. This paper describes the PIRT and the experimental facility design used to determine the condensate return losses arising from phenomena identified by the PIRT.

Publisher

American Society of Mechanical Engineers

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3