The Design of an Improved Force Focused Angioplasty Catheter

Author:

Murphy Bruce P.12,Breen Liam T.3

Affiliation:

1. Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Department of Mechanical and Manufacturing Engineering, School of Engineering, 152-160 Pearse Street, Trinity College Dublin, Dublin 2, Ireland;

2. National Centre for Biomedical Engineering Science, National University of Ireland, Galway, Ireland e-mail:

3. Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Department of Mechanical and Manufacturing Engineering, School of Engineering, 152-160 Pearse Street, Trinity College Dublin, Dublin 2, Ireland e-mail:

Abstract

Atherosclerosis is a disease that causes obstructions to develop within the arterial system; these obstructions can result in an acute vascular event such as a heart attack or stroke, and potentially death. In the majority of cases a standard angioplasty balloon is sufficient to dilate the site of an obstruction; however difficult obstructions, such as heavily calcified lesions require specialist dilation solutions. One such example of a device is Boston Scientific's cutting balloon. An analysis of the Food and Drug Administration's (FDA) Manufacturer and User Facility Device Experience (MAUDE) database demonstrates that the original cutting balloon has a number of distinct adverse events associated with it. In this study we describe the design, manufacturing, and testing of a new force focused angioplasty balloon that has the potential to reduce or eliminate the adverse events associated with the Boston Scientific cutting balloon. This design incorporates two elastomeric materials to aid recoiling of the device namely: nitinol and a silicone elastomer. New methods of manufacturing are described in this study, that ensure that precision molding and assembly can occur. To determine the effectiveness of our device, we simulated concentric calcified lesions with a surrogate chalk model. These results demonstrate that our device has a significantly lower lesion burst pressure in comparison to a standard angioplasty balloon, 174 atm versus 12.48 atm. To determine if our device reduced potential snagging, and thus reduced the risk of withdrawal resistance being encountered, we performed a withdrawal resistance test. A noticeably lower withdrawal force is associated with our device, the high peaks on the Boston Scientific device indicate that there may be wings forming on the balloon and these are catching on the tip of the introducer sheath. Finally, we demonstrated in vivo efficacy of our device in a porcine model. By the use of elastomeric recoiling features in a new cutting balloon design we have been able to overcome the three main reported adverse events associated with the Boston Scientific cutting balloon. Subsequently we experimentally demonstrated this improved efficacy for one particular peripheral balloon size (e.g., 5 mm diameter).

Publisher

ASME International

Subject

Biomedical Engineering,Medicine (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3