A Finite Element Methodology to Study Soil–Structure Interaction in High-Speed Railway Bridges

Author:

Martínez-De la Concha Antonio1,Cifuentes Héctor1,Medina Fernando1

Affiliation:

1. Structures Group, School of Engineering, University of Seville, Camino de los Descubrimientos, s/n, Seville 41092, Spain

Abstract

This paper analyzes the dynamic soil–structure interaction (SSI) of a railway bridge under the load transmitted by high-speed trains using the finite element method (FEM). In this type of bridges, the correct analysis of SSI requires proper modeling of the soil; however, this task is one of the most difficult to achieve with the FEM method. In this study, we explored the influence of SSI on the dynamic properties of the structure and the structure's response to high-speed train traffic using commercial finite element software with direct integration and modal superposition methods. High-speed trains are characterized by the high-speed load model (HSLM) in the Eurocode. We performed sensitivity analyses of the influence of several parameters on the model, such as the size and stiffness of the discretized soil, mesh size, and the influence of the dynamic behavior of the excitation. Based on the results, we make some important and reliable recommendations for building an efficient and simple model that includes SSI. We conducted a dynamic analysis of a full model of a general multispan bridge including the piers, abutments, and soil and identified the impact factors that affected the design of the bridge. The analysis revealed that the methodology we propose allows for a more accurate determination of the dynamic effects of the passage of a train over the bridge, compared to the simpler and more widely used analysis of a directly supported isolated deck, which tends to overestimate the impact factors.

Funder

"Secretaría de Estado de Investigación, Desarrollo e Innovación"

Publisher

ASME International

Subject

Applied Mathematics,Mechanical Engineering,Control and Systems Engineering,Applied Mathematics,Mechanical Engineering,Control and Systems Engineering

Reference39 articles.

1. El Coeficiente De Impacto En Puentes De Ferrocarril;Rev. Obras Públicas,1971

2. Design Issues for Dynamics of High Speed Railway Bridges,2005

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3