Application of Miniature Ring-Core and Interferometric Strain/Slope Rosette to Determine Residual Stress Distribution With Depth—Part II: Experiments

Author:

Ren Wei1,Li Keyu1

Affiliation:

1. Department of Mechanical Engineering, Oakland University, Rochester, MI 48309

Abstract

The theoretical development of the interferometric strain/slope rosette (ISSR) and ring-core cutting method is described in Part I of the paper [K. Li and W. Ren, ASME J. Appl. Mech. 74(2), 298–306 (2007)]. In Part II, experiments are presented to demonstrate the applicability of the method. The procedures of experimentation are developed. An ISSR/ring-core cutting system was established and its measurement stability and accuracy were examined in a two-step measurement program. By repeating the two-step measurement procedures, several incremental ring-core cutting experiments were conducted. Residual stress distribution is calculated from the measured ISSR data by using the relaxation coefficients calibrated in Part I of the paper. Measurement resolution, accuracy, and sensitivity of the ISSR/ring-core method are evaluated. Tests on a titanium block show the reliability of the method in comparison with the results obtained by using other measurement methods. The new method is also applied on a laser weld which demonstrates its uniqueness to measure residual stresses in small areas with high stress gradients. The experiments show advantages of the ISSR/ring-core method, such as miniature size, noncontacting nature, and high sensitivity. The method can be effectively used to measure residual stress distributions with depth on various manufactured components.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference9 articles.

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3