Nonlinear Dynamic Analysis of a Hydrodynamic Journal Bearing Considering the Effect of a Rotating or Stationary Herringbone Groove

Author:

Jang G. H.1,Yoon J. W.1

Affiliation:

1. PREM, Department of Mechanical Engineering, Hanyang University, Seoul, 133-791, Korea

Abstract

This research investigates the dynamic characteristics of a herringbone grooved journal bearing with plain sleeve (GJPS) and a plain journal bearing with herringbone grooved sleeve (PJGS) under static and dynamic load. FEM is used to solve the Reynolds equation in order to calculate the pressure distribution in a fluid film. Reaction forces and friction torque are obtained by integrating the pressure and shear stress along the fluid film, respectively. Dynamic behaviors of a journal, such as orbit or rotational speed, are determined by solving its nonlinear equations of motion with the Runge-Kutta method. Numerical results are validated by the experimental results of prior researchers. A GJPS produces less friction torque than a PJGS so that the GJPS consumes less input power than the PJGS. Under static load, the PJGS converges to the fixed equilibrium position, but the GJPS has a whirling motion due to the rotating groove even at the steady state, which produces the excitation frequencies corresponding to the integer multiple of the rotor speed multiplied by the number of grooves. The variation of rotational speed of a GJPS is always less than that of a PJGS due to less friction torque. Under the effect of mass unbalance, the excitation frequencies of the reaction force in a GJPS and a PJGS are the rotational frequency due to mass unbalance and its harmonics due to the nonlinear effect of fluid film. However, the GJPS has relatively big amplitude corresponding to the multiples of the number of grooves, in comparison with the amplitudes at the adjacent harmonics.

Publisher

ASME International

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

Cited by 50 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3