Turbine Blade Leading Edge Cooling With One Row of Normal or Tangential Impinging Jets

Author:

Wang Nian1,Chen Andrew F.1,Zhang Mingjie1,Han Je-Chin2

Affiliation:

1. Turbine Heat Transfer Laboratory, Department of Mechanical Engineering, Texas A&M University, College Station, TX 77843-3123

2. Turbine Heat Transfer Laboratory, Department of Mechanical Engineering, Texas A&M University, College Station, TX 77843-3123 e-mail:

Abstract

Jet impingement cooling has been extensively used in the leading edge region of a gas turbine blade. This study focuses on the effect of jet impinging position on leading edge heat transfer. The test model is composed of a semicylindrical target plate, side exit slots, and an impingement jet plate. A row of cylindrical injection holes is located along the axis (normal jet) or the edge (tangential jet) of the semicylinder, on the jet plate. The jet-to-target-plate distance to jet diameter ratio (z/d) is 5 and the ratio of jet-to-jet spacing to jet diameter (s/d) is 4. The jet Reynolds number is varied from 10,000 to 30,000. Detailed impingement heat transfer coefficient distributions were experimentally measured by using the transient liquid crystal (TLC) technique. To understand the thermal flow physics, numerical simulations were performed using Reynolds-averaged Navier–Stokes (RANS) with two turbulence models: realizable k–ε (RKE) and shear stress transport k–ω model (SST). Comparisons between the experimental and the numerical results are presented. The results indicate that the local Nusselt numbers on the test surface increase with the increasing jet Reynolds number. The tangential jets provide more uniform heat transfer distributions as compared with the normal jets. For the normal jet impingement and the tangential jet impingement, the RKE model provides better prediction than the SST model. The results can be useful for selecting a jet impinging position in order to provide the proper cooling distribution inside a turbine blade leading edge region.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3