Affiliation:
1. Institute of Aeronautics and Astronautics, National Cheng Kung University, Taiwan, R.O.C.
Abstract
A new design methodology for the vibration control of rotor systems with a magnetic bearing is developed in this paper. The methodology combines the experimental design method in quality control engineering and the conventional PD control technique such that their advantages in implementation feasibility and performance-robustness can be integrated together. A quality loss index defined by the summation of the infinity norm of unbalanced vibration is used to characterize the system dynamics. By using the location of the magnetic bearing and PD feedback gains as design parameters, the controller can be determined by a small number of matrix experiments to achieve the best system performance. In addition, it is robust to the vibration modes within a desired speed range. A rotor system consisting of 4 rigid disks, 3 isotropic bearings, and 1 magnetic bearing is applied to illustrate the feasibility and effectiveness of the experiment-aided controller design.
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献