Flow Control Around a Cylinder With a Perforated Cylinder

Author:

Canpolat Cetin1,Hamzah Hudhaifa2,Sahin Besir3

Affiliation:

1. Biomedical Engineering Department, Cukurova University , Adana 01250, Turkey

2. Air Conditioning and Refrigeration Technical Engineering Department, Technical College, Al-Kitab University , Kirkuk 36001, Iraq

3. Aerospace Engineering Department, Faculty of Engineering, Istanbul Aydin University , Istanbul 34295, Turkey

Abstract

AbstractIn this work, periodic vortex shedding at both sides of a circular cylinder is aimed to be suppressed using a concentrically located perforated cylinder under laminar flow conditions at Re = 200. A code is developed in comsolmultiphysics, 5.3a, and validated using the outcomes of ansysfluent, and previous studies in the open literature, which exhibit a good agreement. In this study, the porosity, β is varied within 0.5 ≤ β ≤ 0.9, and the gap ratio, D/d is varied within 1.5 ≤ D/d ≤ 3.5. The results of the present numerical investigation are evaluated using instantaneous and time-averaged vorticity, streamwise, and transverse components of the velocity and pressure. The drag, CD and lift, CL coefficients are calculated. The Strouhal number, St from the pointwise spectral analysis of the streamwise velocity component is plotted for various cases. It is observed that porosity, β has a dominant effect rather than the gap ratio, D/d on the flow past a solid cylinder. The low-velocity and low-pressure regions are getting large in the transverse direction as the porosity, β increases. The separated layers from solid and perforated cylinders merge for low gap ratios, D/d. However, individual movement of these layers is evident for larger gap ratios, D/d with low porosity, β values. A perfect suppression of the periodicity of vortex shedding is obtained for the cases of D/d = 3.5 with β = 0.5, 0.6, and D/d = 3 with β = 0.5.

Funder

Çukurova vniversitesi

Publisher

ASME International

Subject

Mechanical Engineering

Reference33 articles.

1. Vortex Dynamics in the Cylinder Wake;Annu. Rev. Fluid Mech.,2003

2. Influence of Single Rectangular Groove on the Flow Past a Circular Cylinder;Int. J. Heat Fluid Flow,2017

3. Perspectives on Bluff Body Aerodynamics;J. Wind Eng. Ind. Aerodyn.,1993

4. Separation Control: Review;ASME J. Fluids Eng.,1991

5. Control of Flow Over a Bluff Body;Annu. Rev. Fluid Mech.,2008

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3