GE Jenbacher’s Update on Laser Ignited Engines

Author:

Herdin Gu¨nther1,Klausner Johann1,Weinrotter Martin2,Graf Josef2,Wimmer Andreas3

Affiliation:

1. GE Jenbacher GmbH & Company, Jenbach, Austria

2. Vienna University of Technology, Vienna, Austria

3. Graz University of Technology, Graz, Austria

Abstract

The focus in research year 05 was on the optimization of optical coupling and minimization of laser energy especially in connection with very lean combustion and with high exhaust gas recirculation rates for low NOx emissions. The direct comparison of laser ignition with conventional spark ignitions, without any measures implemented in favor of laser ignition (high compression ratio, high turbulence ratio), consistently shows advantages in the case of laser ignition. With extension of the Lambda window, in the case of a spark ignition engine with a 2.4 1 piston displacement it is possible to shift the engine 0.3 units in the direction of “lean combustion” (possible reduction of NOx level less than 30% of the state of the art); EGR compatibility is increased by about 15% to a recirculation rate of about 40%. With regard to EGR compatibility, in coordination with SWRI (HEDGE Program) similar tests on determination of potential were carried out as well. In this case too no essential measures were implemented in favor of the exploitation of the potential of laser ignition; however, a minor increase of the compression ratio already allows recognition of the theoretically possible and expected potentials. Regarding stoichiometric conditions, from the viewpoint of the researchers working jointly on the project it is possible to reduce the energy to less than 1 mJ. Conversely, in the event of the utilization of lean-burn combustion, appreciably more energy must be provided. Additionally, measures regarding combustion control in the area of the extended lean-burn limit must also be carried out. Only then is it possible to ensure optimal values for burning durations and the variation coefficient. Initial results in this regard will also be presented.

Publisher

ASMEDC

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Single and Dual-Pulse Laser Ignition of Methane-Air and Hydrogen-Air Mixtures;AIAA Scitech 2020 Forum;2020-01-05

2. Dual-Pulse Laser Ignition Using Oxygen REMPI Preionization;AIAA Aviation 2019 Forum;2019-06-15

3. On the Use of REMPI Pre-Ionization for Laser Plasma Formation;2018 AIAA Aerospace Sciences Meeting;2018-01-07

4. Motorische Verbrennung;Grundlagen Verbrennungsmotoren;2012

5. Pre-Ionization Controlled Laser Plasma Formation for Ignition Applications;41st Plasmadynamics and Lasers Conference;2010-06-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3