Recent Advances in High-Flux, Two-Phase Thermal Management

Author:

Mudawar Issam1

Affiliation:

1. Purdue University, West Lafayette, IN

Abstract

Recent developments in applications such as computer data centers, electric vehicle power electronics, avionics, radars and lasers have led to alarming increases in heat dissipation rate, which now far exceeds the capability of air cooling schemes and even the most aggressive single-phase liquid cooling schemes. This trend is responsible for a recent transition to two-phase cooling, which capitalizes upon the coolant’s latent heat rather than sensible heat alone to achieve several order-of-magnitude increases in heat transfer coefficient. Three two-phase cooling configurations have surfaced as top contenders for the most demanding applications: mini/micro-channel, jet and spray. This study will explore the implementation of these configurations into practical cooling packages, assess available predictive tools, and identify future research needs for each. It is shown that the design and performance assessment of high-flux, two-phase cooling systems are highly dependent on empirical or semi-empirical predictive tools and, to a far lesser extent, theoretical mechanistic models. A major challenge in using such tools is the lack of databases for coolants with drastically different thermophysical properties, and which cover broad ranges of such important parameters as flow passage size, mass velocity, quality and pressure. Recommendations are therefore made for future research to correct any critical knowledge gaps, including the need for robust computer algorithms. Also discussed is a new class of ‘hybrid’ cooling schemes that capitalize upon the merits of multiple cooling configurations. It is shown that these hybrid schemes not only surpass the basic cooling configurations in heat dissipation rate, but they also provide better surface temperature uniformity.

Publisher

American Society of Mechanical Engineers

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3