Fault-Tolerant Control of Programmable Logic Controller-Based Production Systems With Deep Reinforcement Learning

Author:

Zinn Jonas1,Vogel-Heuser Birgit1,Gruber Marius1

Affiliation:

1. Institute of Automation and Information Systems Mechanical Engineering, Technical University of Munich, 85748 Garching, Germany

Abstract

Abstract Fault-tolerant control policies that automatically restart programable logic controller-based automated production system during fault recovery can increase system availability. This article provides a proof of concept that such policies can be synthesized with deep reinforcement learning. The authors specifically focus on systems with multiple end-effectors that are actuated in only one or two axes, commonly used for assembly and logistics tasks. Due to the large number of actuators in multi-end-effector systems and the limited possibilities to track workpieces in a single coordinate system, these systems are especially challenging to learn. This article demonstrates that a hierarchical multi-agent deep reinforcement learning approach together with a separate coordinate prediction module per agent can overcome these challenges. The evaluation of the suggested approach on the simulation of a small laboratory demonstrator shows that it is capable of restarting the system and completing open tasks as part of fault recovery.

Publisher

ASME International

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3