Energy Separation in a Jet Flow

Author:

Seol W. S.1,Goldstein R. J.1

Affiliation:

1. Mechanical Engineering Department, University of Minnesota, Minneapolis, MN, 55455

Abstract

Fluids in motion can separate into regions of higher and lower energy (temperature); this is called “energy separation.” The present study concerns the mechanism of energy separation in a free, circular, air jet, including the effects of acoustic excitation. Starting with the initial energy separation occurring in the boundary layer inside the nozzle, the energy separation in a jet begins to be affected by the action of vortices from an axial location, measured from the jet exit, of about 0.3D (D is the diameter of nozzle exit), becomes intensified at about 0.5D, begins to be diffused from about 1D, and there is no discernible energy separation at about 14D. The entrainment of the ambient fluid considerably affects the energy separation, and its effects appear at axial locations between about 6D and 8D. The present definition of the energy separation factor renders its distribution independent of the jet Reynolds number; except for axial locations between about 0.3D and 4D. The development of energy separation in the region close to the nozzle exit is faster when the jet Reynolds number is higher. Acoustic excitation not only enhances the energy separation, but also accelerates its diffusion. This effect is greatest for axial locations between about 1D and 4D. The fact that the acoustic excitation has a strong effect on the vortex structure and the energy separation provides good evidence that the convective that the convective that the convective movement of vortices is the cause of energy separation in jets.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3