Electrical Conductive Characteristics of Anisotropic Conductive Adhesive Particles

Author:

Dou G. B.1,Chan Y. C.1,Liu Johan2

Affiliation:

1. Department of Electronic Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong,

2. Division of Electronics Production, Department of Production Technology, School of Mechanical and Vehicular Engineering, Chalmers University of Technology, Gothenburg S-412 96, Sweden

Abstract

In anisotropic conductive adhesive (ACA) interconnections, the particles are electrical conductors providing current paths in the fine pitch electronic packaging as well as physical parts connecting with the chip bumps and the substrate pads through the mechanical deformation interfaces. The primary object of this fundamental research is to reveal the electrical conductive characteristics of Ni/Au coated resin particles. Such an ACA particle resistance is resulted from two metal coated layers, which are two parallel resistors in the circuit determined by the particle transformation degree. In order to investigate the effect of the particle transformation degree upon the particle resistance, the particle transformation factor is defined. The mathematical electrical resistance function of an ACA particle, an integral function of the transformation factor and the particle geometries, resin diameter, nickel layer thickness, and gold layer thickness, is worked out from the physical model of an ACA particle. To carry out the solutions of the function, MathCAD software is applied. According to the numerical solutions, the deeper the particle transformation, the thicker the metal coated layer thicknesses and the longer the resin diameter are, the lower the particle resistance is. In conclusion, it is stated that the ACA particle resistance is determined by the particle transformation and the particle geometries, however, the transformation and the nickel layer thickness are more sensitive than the resin diameter and the gold layer thickness. Finally, the resistance function will explain the conductive mechanism of the deformed ACA particle.

Publisher

ASME International

Subject

Electrical and Electronic Engineering,Computer Science Applications,Mechanics of Materials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3