Residual Elimination Algorithm Enhancements to Improve Foot Motion Tracking During Forward Dynamic Simulations of Gait

Author:

Jackson Jennifer N.12,Hass Chris J.3,Fregly Benjamin J.45

Affiliation:

1. Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611;

2. Functional and Applied Biomechanics Section, Rehabilitation Medicine Department, National Institutes of Health, Bethesda, MD 20892

3. Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL 32611

4. Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32611;

5. Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611 e-mail:

Abstract

Patient-specific gait optimizations capable of predicting post-treatment changes in joint motions and loads could improve treatment design for gait-related disorders. To maximize potential clinical utility, such optimizations should utilize full-body three-dimensional patient-specific musculoskeletal models, generate dynamically consistent gait motions that reproduce pretreatment marker measurements closely, and achieve accurate foot motion tracking to permit deformable foot-ground contact modeling. This study enhances an existing residual elimination algorithm (REA) Remy, C. D., and Thelen, D. G., 2009, “Optimal Estimation of Dynamically Consistent Kinematics and Kinetics for Forward Dynamic Simulation of Gait,” ASME J. Biomech. Eng., 131(3), p. 031005) to achieve all three requirements within a single gait optimization framework. We investigated four primary enhancements to the original REA: (1) manual modification of tracked marker weights, (2) automatic modification of tracked joint acceleration curves, (3) automatic modification of algorithm feedback gains, and (4) automatic calibration of model joint and inertial parameter values. We evaluated the enhanced REA using a full-body three-dimensional dynamic skeletal model and movement data collected from a subject who performed four distinct gait patterns: walking, marching, running, and bounding. When all four enhancements were implemented together, the enhanced REA achieved dynamic consistency with lower marker tracking errors for all segments, especially the feet (mean root-mean-square (RMS) errors of 3.1 versus 18.4 mm), compared to the original REA. When the enhancements were implemented separately and in combinations, the most important one was automatic modification of tracked joint acceleration curves, while the least important enhancement was automatic modification of algorithm feedback gains. The enhanced REA provides a framework for future gait optimization studies that seek to predict subject-specific post-treatment gait patterns involving large changes in foot-ground contact patterns made possible through deformable foot-ground contact models.

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

Reference35 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3