Experimental Analysis of Confined Jet Flames by Laser Measurement Techniques

Author:

Lammel Oliver1,Stöhr Michael1,Kutne Peter1,Dem Claudiu1,Meier Wolfgang1,Aigner Manfred1

Affiliation:

1. German Aerospace Center (DLR), Institute of Combustion Technology, Pfaffenwaldring 38-40, D-70569 Stuttgart, Germany

Abstract

An experimental analysis of confined premixed turbulent methane/air and hydrogen/air jet flames is presented. A generic lab scale burner for high-velocity preheated jets equipped with an optical combustion chamber was designed and set up. The size and operating conditions were configured to enable flame stabilization by recirculation of hot combustion products. The geometry of the rectangular confinement and an off-center positioning of the jet nozzle were chosen to resemble one burner nozzle of a FLOX®-based combustor. The off-center jet arrangement caused the formation of a pronounced lateral recirculation zone similar to the one in previously investigated FLOX®-combustors (Lückerath et al., 2007. “FLOX® Combustion at High Pressure with Different Fuel Compositions,” ASME J. Eng. Gas Turbines Power, 130(1), pp. 011505; Lammel et al., 2010. “FLOX® Combustion at High Power Density and High Flame Temperatures,” ASME J. Eng. Gas Turbines Power, 132(12), p. 121503ff). The analysis was accomplished by different laser measurement techniques. Flame structures were visualized by OH* chemiluminescence imaging and planar laser-induced fluorescence of the OH radical. Laser Raman scattering was used to determine concentrations of the major species and the temperature. Velocity fields were measured with particle image velocimetry. Results of measurements in two confined jet flames are shown. The mixing of fresh gas with recirculating combustion products and the stabilization of the methane flame are discussed in detail. The presented findings deliver important information for the understanding of confined jet flames operated with different fuels. The obtained data sets can be used for the validation of numerical simulations as well.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3