A Theoretically Based Valve Noise Prediction Method for Compressible Fluids

Author:

Reethof G.1,Ward W. C.1

Affiliation:

1. Dept. of Mechanical Engineeirng, The Pennsylvania State University, University Park, PA 16802

Abstract

Noise generated by control valves in power generation, chemical and petrochemical plants must be predictable so that proper design measures can be taken to conform to OSHA’s noise regulation. Currently available noise prediction methods are empirically based and not sufficiently accurate. The method proposed is based on jet noise theory for both subcritical and choked conditions, duct acoustics theory in terms of higher order mode generation and propagation, and the theory of acoustics-structure interaction in the development of the transmission loss values for the pipe. One third octave values are calculated over the audio spectrum by incorporating spectral aspects of noise generation, propagation, transmission, and radiation. The predicted values of noise for several size cage globe valves over wide pressure ranges compare well with measured results by two prominent valve manufacturers. The method, at present, is restricted to conventional valve styles, as opposed to the special low noise valve types with their very complicated orificial elements.

Publisher

ASME International

Subject

General Engineering

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Study on the design of control valve for U-shaped noise reduction cage and its fluid flow features and noise;Flow Measurement and Instrumentation;2023-08

2. Dennis K. McLaughlin: Some history and achievements;International Journal of Aeroacoustics;2018-02-24

3. Sound Radiation From Pipe and Duct Systems;Mechanics of Flow-Induced Sound and Vibration, Volume 2;2017

4. Acoustical characteristics of two-phase horizontal intermittent flow through an orifice;Acta Acustica united with Acustica;2016-09-01

5. Flow-induced vibration and noise in control valve;Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science;2015-02-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3