Tree-Based Dependency Analysis in Decomposition and Re-decomposition of Complex Design Problems

Author:

Chen Li1,Ding Zhendong1,Li Simon1

Affiliation:

1. Design and Manufacturing Integration Laboratory, Department of Mechanical and Industrial Engineering, University of Toronto, 5 King’s College Road, Toronto, ON, Canada M5S 3G8

Abstract

We have developed a formal method for decomposition of complex design problems in two phases: dependency analysis and matrix partitioning. Of the most distinct characteristic in this method is the support of cost-effective re-decomposition (as is often required in decomposition solution synthesis), where dependency analysis serves as a platform for the enabling of re-decomposition. Yet, this requires that the result of the dependency analysis be robust and thus reusable for re-decomposition. In this paper, after revealing the deficiency in the current practice of dependency analysis, we present an enhanced dependency analysis method that is built on ordinary tree structure (instead of binary tree structure). This new approach, which is more systematic, ensures robust dependency analysis, whose result is insensitive to the arrangement of a tree structure in tree-based dependency analysis. A complete set of tree-based algorithms is also provided, along with their applications to two design examples

Publisher

ASME International

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3