Nonlinear Vibration of Orthotropic Rectangular Membrane Structures Including Modal Coupling

Author:

Li Dong12,Zheng Zhou Lian13,Todd Michael D.2

Affiliation:

1. School of Civil Engineering, University of Chongqing, 83 Shabei Street, Chongqing 400045, China;

2. Department of Structural Engineering, University of California San Diego, 9500 Gilman Drive 0085, La Jolla, CA 92093-0085 e-mail:

3. Chongqing Jianzhu College, Chongqing 400072, China e-mail:

Abstract

The membrane structure has been applied throughout different fields such as civil engineering, biology, and aeronautics, among others. In many applications, large deflections negate linearizing assumptions, and linear modes begin to interact due to the nonlinearity. This paper considers the coupling effect between vibration modes and develops the theoretical analysis of the free vibration problem for orthotropic rectangular membrane structures. Von Kármán theory is applied to model the nonlinear dynamics of these membrane structures with sufficiently large deformation. The transverse displacement fields are expanded with both symmetric and asymmetric modes, and the stress function form is built with these coupled modes. Then, a reduced model with a set of coupled equations may be obtained by the Galerkin technique, which is then solved numerically by the fourth-order Runge–Kutta method. The model is validated by means of an experimental study. The proposed model can be used to quantitatively predict the softening behavior of amplitude–frequency, confirm the asymmetric characters of mode space distribution, and reveal the influence of various geometric and material parameters on the nonlinear dynamics.

Funder

National Natural Science Foundation of China

China Scholarship Council

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3