Cross-Correlation Velocimetry for Measurement of Velocity and Temperature Profiles in Low-Speed, Turbulent, Nonisothermal Flows

Author:

Motevalli V.1,Marks C. H.2,McCaffrey B. J.3

Affiliation:

1. Center for Firesafety Studies and Mechanical Engineering Department, Worcester Polytechnic Institute, Worcester, MA 01609

2. Department of Mechanical Engineering, University of Maryland, College Park, MD 20742

3. Mechanical Engineering, University of Maryland, Baltimore, MD 21228

Abstract

A technique utilizing thermocouple pairs as sensors to measure velocity and temperature profiles in low-speed, turbulent, nonisothermal flows is described here. In this technique, Cross-Correlation Velocimetry (CCV), the temperature-time records from a pair of thermocouples, one downstream of the other, are cross-correlated to determine the flow’s preferred mean velocity while temperature is measured directly. The velocity measurements have undergone extensive verification using hotwire, pitot tube, and Laser-Doppler Velocimetry to determine the degree of confidence in this technique. This work demonstrates that the CCV technique is quite reliable and can measure the mean preferred component of the convective velocity with better than ±5 percent certainty. Application of this technique to the measurement of velocities in a ceiling jet induced by a fire plume is briefly presented here.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3