Response of a Realistic Human Head-Neck Model to Impact

Author:

Goldsmith W.1,Sackman J. L.1,Ouligian G.1,Kabo M.1

Affiliation:

1. University of California, Berkeley, Calif.

Abstract

A structurally realistic model of the human head-neck system, consisting of a water-filled human cadaver skull and an artificial neck was subjected to pendulum impact under nondestructive conditions. The neck consisted of a series of neoprene and aluminum rings fabricated so as to faithfully reproduce the head motion of living persons in the saggital plane. Both an aluminum spherical shell and a solid steel sphere were employed to produce contact durations of the order of 1–6 ms and 0.2–1 ms, respectively, depending upon whether the impact occurred against the bare skull or against one of several scalp simulators used. Both frontal and occipital blows were produced on the system. A series of pressure transducers were suspended along the impact axis that measured the history of this parameter for the various conditions employed, and a crystal transducer arrangement ascertained the force input to the system. A displacement gage was utilized to record the excursion of the head-neck junction. Significant differences in pressure response were noted between frontal and occipital blows without protective covers that disappeared when scalp simulators were employed. The response characteristics in the present tests were much simpler than in corresponding tests using an acrylic shell for the head model, where pressures under similar impulsive loading conditions were at least an order of magnitude larger; this difference is attributed to the layering effect of the real skull relative to the homogeneous shell previously used.

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Cavitation in blunt impact traumatic brain injury;Experiments in Fluids;2024-07-17

2. Traumatic Brain Injury: Models and Mechanisms of Traumatic Brain Injury;Biomechanical Principles and Applications in Sports;2019

3. The State of Head Injury Biomechanics: Past, Present, and Future: Part 1;Critical Reviews™ in Biomedical Engineering;2001

4. Literature review of head injury biomechanics;International Journal of Impact Engineering;1994-08

5. Mechanisms of impact head injury;International Journal of Impact Engineering;1994-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3