Two-Way Coupling Effects in Dilute Gas-Particle Flows

Author:

Di Giacinto M.1,Sabetta F.2,Piva R.3

Affiliation:

1. Istituto di Propulsione Aerospaziale, Universita` di Roma, 00184 Rome, Italy

2. Istituto di Fisica Generale, Universita` di Ancona, 60100 Ancona, Italy

3. Istituto di Meccanica Applicata, Universita` di Roma, 00184 Rome, Italy

Abstract

A general analysis of gas-particle flows, under the hypotheses of number of particles large enough to consider the solid phase as a continuum and of volume fraction small enough to consider the suspension as dilute, is presented. The Stokes number Sk and the particle loading ratio β are shown to be the basic parameters governing the flow. Depending on the values of these two parameters, in one case the reciprocal interaction of the fluid and solid phases must be considered (two-way coupling), in the second case only the effect of the fluid field on the particle motion is relevant (one-way coupling). In the more general case of two-way coupling, the flow is governed by two sets of Navier-Stokes equations, one for each phase, which are coupled together through the particle volume fraction and the momentum interchange forces. The two systems of equations, expressed in the variables velocity, pressure, and particle volume fraction, are solved numerically by a finite difference scheme. The model has been applied to a duct with a sudden restriction, simulating a flow metering device. The coupling effect both on fluid and solid phase fields, the increase of pressure drop, and the energy dissipated in the fluid-solid interaction have been determined as functions of the governing parameters, Sk and β. The parametric study also indicates the ranges of β and Sk in which simplified formulations may be assumed.

Publisher

ASME International

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3