Development of Thermal-Hydraulic Code Coupled With Heat Conduction in Structure for Thermal Striping Phenomena: Development of Calculation Module for Temperature Distribution in Structure

Author:

Tanaka Masa-Aki1,Ohshima Hiroyuki1

Affiliation:

1. Japan Atomic Energy Agency, O-arai, Ibaraki, Japan

Abstract

Thermal striping is one of the most important issues in terms of safety of Fast Breeder Reactors (FBRs). Thermal striping occurs where high temperature fluid mixes with low temperature one and it might cause structural damage. An analysis program (“MUGTHES”) for fluid-structure thermal interaction has been developed to evaluate the thermal striping phenomena and to establish the evaluation method. MUGTHES consists of two calculation modules for thermal-hydraulic analysis and for heat conduction analysis in structure and a conjugated heat transfer model that connects both modules. Thus, thermal-hydraulic field and temperature field in structure can be calculated simultaneously. Boundary Fitted Coordinate (BFC) system is employed to treat complex geometries in FBR plants. Governing equations in BFC system are discretized using the finite-volume approach to keep these conservation conditions in computation. In this paper, detailed description of the evaluation method of spatial differential terms in the equations was described. Numerical simulations were performed using fundamental problems related to one dimensional transient heat conduction in a cube and to radial transient heat conduction in a cylinder, in order to verify the discretization method in BFC system and the calculation method for thermal interaction between two calculation regions. In addition, numerical simulation of T-junction piping system was carried out to investigate characteristics of temperature fluctuation and to confirm the applicability of the program to a practical problem.

Publisher

ASMEDC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3