An Interactive Rehabilitation Mechanism Design System for Kinematic and Kinetostatic Synthesis With Expandable Solution Space

Author:

Li Xiangyun1,Shu Xin1,Chen Peng2,Yu Xi3,Li Kang1

Affiliation:

1. Sichuan University West China Biomedical Big Data Center, West China Hospital, , Chengdu 610041 , China

2. Southwest Jiaotong University School of Mechanical Engineering, , Chengdu 610031 , China

3. Sichuan University Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, , Chengdu 610041 , China

Abstract

Abstract Compared to manual therapy, robot therapy can provide more intensive and accurate rehabilitation training. However, most current devices are built on bulky and complex multi-degree-of-freedom (multi-DOF) mechanisms. Recently, 1-DOF mechanisms have gained popularity due to their portability and simplicity. Existing synthesis methods for 1-DOF mechanisms focus primarily on computing the optimal mechanism dimensions such that kinematic error between the task and the mechanism output is minimized. In cases where the kinematically feasible solutions become impractical under engineering circumstances, designers may need a handle to intervene in the synthesis process; moreover, the force interactions between the mechanism and users should also be considered to encourage the active participation of users for effective physical recovery. In this paper, we combine kinematic and kinetostatic synthesis to develop an interactive rehabilitation mechanism design system, taking into account task specifications on rehabilitation motion and gravity balancing. To enable interactive design, users are invited to manage the task movement via kinematic tolerance-oriented variation, thus providing the flexibility to address practical constraints. To compensate the gravity, torsional springs are attached to the actuated joints of the mechanism and human limb, and designed based on the principle of static balancing. For presenting a systematic, general, and defect-free design methodology for 1-DOF rehabilitation mechanisms, the synthesis model is formulated in a Fourier way to better accommodate different mechanism types and continuous limb motion. Examples of the upper- and lower-limb rehabilitation mechanism design are given in the end to demonstrate the validity of the proposed method.

Funder

Department of Science and Technology of Sichuan Province

National Natural Science Foundation of China

Sichuan University

Publisher

ASME International

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Reference46 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3