Velocity Characteristics of a Confined Coaxial Jet

Author:

Habib M. A.1,Whitelaw J. H.1

Affiliation:

1. Mechanical Engineering Department, Imperial College, London, England

Abstract

The velocity characteristics of a turbulent, confined, coaxial-jet flow have been determined by measurement and by the solution of conservation equations in differential form. The ratios of maximum annulus to pipe velocity were 3 and 1 and, in both cases, the profiles were fully developed in the exit plane. The geometric arrangement corresponded to a model furnace and the investigation was undertaken to provide information, for isothermal flow, relevant to furnace flows. The measurements were obtained with a hot-wire anemometer and include distributions of the axial mean velocity and the components of the Reynolds-stress tensor. They show, for example, that the larger velocity ratio results in a larger region of recirculation, larger velocity gradients and larger turbulence intensities in the mixing region and downstream of the region of reverse flow. Numerical solutions of the time-averaged forms of the equations of conservation of mass and momentum, together with equations for turbulence energy and dissipation rate, provided results which are in close agreement with the measurements except in regions of more than one major component of the velocity-gradient tensor where they are substantially in error. The reasons for the discrepancies and the consequential value of the calculation method are discussed.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3