Axisymmetric Elastoplasticity of a Temperature-Sensitive Functionally Graded Cylindrical Vessel

Author:

Sadeghian Mojtaba1,Ekhteraei Toussi Hamid2

Affiliation:

1. Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad 9177948944, Iran e-mail:

2. Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad 9177948944, Iran

Abstract

Based on the small deformation theory and Tresca's yield criterion an axisymmetric, plane strain, elastoplastic, thermal stress analysis for a cylindrical vessel made of functionally graded elastic, perfectly plastic material is offered. Elastic modulus and yield strength coefficients are assumed to be power functions of radius and linear functions of temperature. A cylindrical vessel is taken to be composed of two or more nested fully elastic and perfectly plastic cylinders. By comparing the values of the deformation or stress components in the interfaces of the neighboring cylinders, a system of equations is formed. The interfacial boundary values of the fully elastic or perfectly plastic regions are obtained by simultaneous solution of the resulting interfacial consistency conditions. Having prepared the closed form solutions for the stress fields in purely elastic and purely plastic regions, the distribution of stress throughout the vessel can be obtained. Using this model, in some sample problems, the influences of temperature and pressure on the stress, strain, and plastic zone patterns are studied. The location of plastic zones is obtained for a class of material property compositions.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Safety, Risk, Reliability and Quality

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3