Affiliation:
1. Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, UK
2. Formerly GE Power, Baden 5400, Switzerland
Abstract
Abstract
Accurate prediction of unsteady thermal loads is of paramount importance in several engineering disciplines and applications. Performing time-accurate unsteady conjugate heat transfer (CHT) simulations presents considerable challenges due to the markedly different time scales between the solid and fluid domains. Two methods have been recently proposed, aimed at addressing this issue: multiscale modeling (MSM) and equalized time-scales (ET). The former is based on the separation of the disparate short and long temporal scales of the solution and subsequent averaging of the flow/energy equations. In the latter, the equalization of the time scales is achieved through manipulation of the solid's thermal properties. Both methods are very appealing due to the possibility of being easily implemented on an existing solver. It becomes, thus, relevant to assess their performance and/or limitations. This paper work presents a comparative study of the two methods for the prediction of transient thermal load, first using a simplified case of a solid body with uniform temperature, then through the investigation of the prewarming phase of a steam turbine. Both methods are then compared against a reference baseline fully coupled (FC) CHT solution. The results show how the MSM allows greater accuracy and robustness with considerable saving in computational cost with respect to the baseline solution.
Subject
Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献