A Numerical Study on the Influence of Hole Depth on the Static and Dynamic Performance of Hole-Pattern Seals

Author:

Migliorini Patrick J.1,Untaroiu Alexandrina1,Wood Houston G.2

Affiliation:

1. Rotating Machinery and Controls (ROMAC) Laboratory, Department of Mechanical and Aerospace Engineering, University of Virginia, 122 Engineer's Way, Charlottesville, VA 22904-4746 e-mail:

2. Professor Rotating Machinery and Controls (ROMAC) Laboratory, Department of Mechanical and Aerospace Engineering, University of Virginia, 122 Engineer's Way, Charlottesville, VA 22904-4746 e-mail:

Abstract

Annular seals serve an important role in the dynamics of turbomachinery by reducing leakage of a process fluid while also contributing potentially destabilizing forces to the rotor system. Hole-pattern seals have been the focus of many investigations, but recent experimental studies have shown that there are still many phenomena that require exploration. One such phenomenon is the influence of hole depth on the static and dynamic characteristics of the seal. In this paper, a hybrid computational fluid dynamics (CFD)/bulk-flow method is employed to investigate the nonmonotonic relationship between hole depth and leakage shown in experimental measurements of a hole-pattern seal by Childs et al. (2014, “The Impact of Hole Depth on the Rotordynamic and Leakage Characteristics of Hole-Pattern-Stator Gas Annular Seals,” ASME J. Eng. Gas Turbines Power, 136(4), p. 042501). Three hole depths (1.905 mm, 3.302 mm, and 6.604 mm) and three running speeds (10,200 rpm, 15,350 rpm, and 20,200 rpm) are considered. For the steady-state flow, the 3D Reynolds-Averaged-Navier-Stokes (RANS) equations are solved with the k-ϵ turbulence model for a circumferentially periodic sector of the full seal geometry. The steady-state results are input into the first-order equations of a bulk-flow model to predict rotordynamic coefficients. Results of the hybrid method are compared to experimental data. CFD predicted leakage showed good agreement (within 5%) for the 3.302 mm and 6.604 mm hole depth configurations. For the 1.905 mm hole depth seal, agreement was within 17%. An additional set of calculations performed with the shear stress transport (SST) turbulence model produced worse agreement. Examination of streamlines along the seal show that the hole depth controls the shape of the vortex that forms in the hole, driving the resistance experienced by the jet flow in the clearance region. For the rotordynamic coefficients, good agreement is shown between predictions and experiment for most excitation frequencies.

Publisher

ASME International

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3