Parametric Topology Optimization Toward Rational Design and Efficient Prefabrication for Additive Manufacturing

Author:

Jiang Long1,Ye Hang2,Zhou Chi2,Chen Shikui1,Xu Wenyao2

Affiliation:

1. State University of New York at Stony Brook, Stony Brook, NY

2. State University of New York at Buffalo, Buffalo, NY

Abstract

The significant advance in the boosted fabrication speed and printing resolution of additive technology has considerably increased the capability of achieving product designs with high geometric complexity. The prefabrication computation has been increasingly important and is coming to be the bottleneck in the additive manufacturing process. In this paper, the authors devise an integrated computational framework by synthesizing the parametric level set-based topology optimization method with the DLP-based SLA process for intelligent design and additive manufacturing of not only single material structures but also multi-scale, multi-functional structures. The topology of the design is optimized with a new distance-regularized parametric level set method considering the prefabrication computation. offering the flexibility and robustness of the structural design that the conventional methods could not provide. The output of the framework is a set of mask images which can be directly used in the additive manufacturing process. The proposed approach seamlessly integrates the rational design and manufacturing to reduce the complexity of the computationally-expensive prefabrication process. Two test examples, including a freeform 3D cantilever beam and a multi-scale meta-structure, are utilized to demonstrate the performance of the proposed approach. Both the simulation and experimental results verified that the new rational design could significantly reduce the prefabrication computation cost without affecting the original design intent or sacrificing original functionality.

Publisher

American Society of Mechanical Engineers

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3