Pore Permeability Model Based on Fractal Geometry Theory and Effective Stress

Author:

Ge Zhaolong1,Zhang Hui1,Zhou Zhe1,Hou Yudong1,Ye Maolin1,Li Chengtian1

Affiliation:

1. Chongqing University State Key Laboratory of Coal Mine Disaster Dynamics and Control; National & Local Joint Engineering Laboratory of Gas Drainage in Complex Coal Seam, , Chongqing 400044 , China

Abstract

AbstractA reasonable coal seam permeability model should be established to accurately estimate the extraction effectiveness of coalbed methane (CBM). Existing permeability models typically ignore the influence of pore structure parameters on the permeability, leading to an overestimation of the measured permeability, and consequently, the CBM production cannot be effectively predicted. This paper presents a novel permeability model based on discrete pore structures at the micro–nano scale. The model considers the interaction between the pore fractal geometry parameters, coal deformation, and CBM transport inside these pores. The contributions of key pore geometry parameters, including the maximum pore diameter, minimum pore diameter, porosity, and fractal dimensions, to the initial permeability were investigated. A numerical analysis showed that the influence of fractal dimension on the permeability is finally reflected in the influence of pore structure parameters. The initial permeability is exponential to the minimum pore diameter and proportional to the maximum pore diameter and porosity. In addition, the macroscopic permeability of the coal is positively correlated with the maximum pore diameter, minimum pore diameter, and porosity, with the minimum pore diameter having the most significant influence on the permeability evolution process. This research provides a theoretical foundation for revealing the gas flow mechanism within coal seams and enhancing the extraction effectiveness of CBM.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Chongqing

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3