Estimating Deterioration Level of Aircraft Engines

Author:

Qiu Hai1,Eklund Neil1,Yan Weizhong1,Bonissone Piero1,Xue Feng1,Goebel Kai2

Affiliation:

1. GE Global Research Center, Niskayuna, NY

2. NASA Ames Research Center, Moffett Field, CA

Abstract

This paper describes an approach to estimate the deterioration level of aircraft engines using engine monitoring data and a physics-based engine model. The estimation process is carried out by a neural network, which is trained by data generated using a physical-based engine model complemented with an empirically derived engine deterioration model. The deterioration model allows manipulation of several engine health parameters, such as module efficiency and flow capacity, to simulate engine deterioration. Simulated sensor outputs are used to build independent transfer functions relating the sensor values to a deterioration level. A calibration model corrects the sensor readings to a reference condition so that the effect of variation of operating condition is minimized. The proposed approach can be used to assess engine deterioration level in real time. The proposed deterioration estimation approach is validated using real-world engine data.

Publisher

ASMEDC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Aircraft Engine Performance Model Identification using Artificial Neural Networks;AIAA Propulsion and Energy 2021 Forum;2021-07-28

2. Industrial Gas Turbine Health and Performance Assessment With Field Data;Journal of Engineering for Gas Turbines and Power;2016-12-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3