Modeling Die Swell of Second-Order Fluids Using Smoothed Particle Hydrodynamics

Author:

Sadek Samir H.,Yildiz Mehmet1

Affiliation:

1. Faculty of Engineering and Natural Sciences, Advanced Composites & Polymer Processing Laboratory, Sabanci University, 34956 Tuzla, Istanbul, Turkey

Abstract

This work presents the development of a weakly compressible smoothed particle hydrodynamics (WCSPH) model for simulating two-dimensional transient viscoelastic free surface flow which has extensive applications in polymer processing industries. As an illustration for the capability of the model, the extrudate or die swell behaviors of second-order and Olyroyd-B polymeric fluids are studied. A systematic study has been carried out to compare constitutive models for second-order fluids available in literature in terms of their ability to capture the physics behind the swelling phenomenon. The effects of various process and rheological parameters on the die swell such as the extrusion velocity, normal stress coefficients, and Reynolds and Deborah numbers have also been investigated. The models developed here can predict both swelling and contraction of the extrudate successfully. The die swell of a second-order fluid was solved for a wide range of Deborah numbers and for two different Reynolds numbers. The numerical approach was validated through the solution of fully developed Newtonian and non-Newtonian viscoelastic flows in a two-dimensional channel as well as modeling the die swell of a Newtonian fluid. The results of these three benchmark problems were compared with analytic solutions and numerical results in literature when pertinent, and good agreements were obtained.

Publisher

ASME International

Subject

Mechanical Engineering

Reference41 articles.

1. Dynamics of Viscoelastic Jets of Polymeric Liquid Extrudate;J. Non-Newton. Fluid,1999

2. Delayed Die Swell;J. Non-Newton Fluid,1987

3. Numerical-Simulation of Entry and Exit Flows in Slit Dies;Polym. Eng. Sci.,1984

4. The Numerical-Simulation of Boger Fluids: A Viscometric Approximation Approach;Polym. Eng. Sci.,1986

5. Three-Dimensional Non-Newtonian Computations of Extrudate Swell With the Finite Element Method;Comput. Method. Appl. M.,1999

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3