Squealer Tip Heat Transfer With Film Cooling

Author:

Acharya Sumanta1,Kramer Gregory1,Moreaux Louis1,Nakamata Chiyuki2

Affiliation:

1. Louisiana State University, Baton Rouge, LA

2. IHI Corporation, Tokyo, Japan

Abstract

Heat transfer coefficients and film cooling effectiveness values were obtained numerically on a film cooled 2-D gas turbine blade tip model featuring a cutback squealer. In addition, pressure distributions were obtained at 50% and 98% spans. The calculations were performed for a single blade with periodic boundary conditions imposed along the two mid-passage boundaries formed by the adjacent blades. The calculations were performed with the realizable k-ε turbulence model and non-equilibrium wall function using 1.1 million elements. The numerical results are obtained for 4 blowing ratios and for Reynolds number based on axial chord and inlet velocity of 75,000. Limited experimental measurements of the blade pressure distributions and the uncooled tip heat transfer coefficients were performed for validation of the numerical results. The experiments were conducted in a six-blade low-speed wind tunnel cascade at a Reynolds number of 75,000. The heat transfer experiment involved a transient infrared thermography technique. Experimental heat transfer coefficients were extracted using a transient technique. The predicted pressure distributions agree very well with the measurements while the heat transfer coefficient predictions show qualitative agreement. From the numerical results, it can be seen that as the blowing ratio is increased, larger regions of film cooling effectiveness were seen with higher effectiveness values between the camber line and suction side. Heat transfer coefficients were largest near the leading edge for all cases.

Publisher

ASMEDC

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3