Affiliation:
1. Deutsches Zentrum f. Luft- u. Raumfahrt (DLR), Stuttgart, Germany
2. Rolls-Royce Deutschland, Blankenfelde-Mahlow, Germany
Abstract
The altitude relight performance of a lean fuel injector and combustor was investigated at the altitude relight test rig at the Rolls-Royce Strategic Research Centre (SRC) in Derby. The studies were performed for different mass flow rates of air and kerosene, a combustor temperature and pressure of 278 K and 0.5 bar, respectively. Good optical access to the combustion chamber enabled the application of optical and laser measuring techniques. High-speed video imaging in the UV and visible wavelength range at a frame rate of 3.5 kHz was used to visualize the temporal development of the flame kernel. The observed differences between the UV and visible flame emissions demonstrate the different origins of the luminosity, i.e. OH* chemiluminescence and soot radiation. Further, laser-induced fluorescence of kerosene and OH radicals was applied at a frame rate of 5 Hz to visualize the fuel distribution and regions of hot and reacting mixtures. For two exemplary flames with different mass flow rates and fuel-to-air ratios, the steady burning flames after successful ignition are characterized in this paper by the distributions of kerosene, OH*, OH and soot luminosity. An example of the flame kernel development for a successful ignition is given by an image sequence from a high-speed video recording of the chemiluminescence. The importance of the upstream movement of the flame kernel as a condition preceding successful flame stabilization is identified.
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献