The Effect of an Upstream Compressor on a Non-Axisymmetric S-Duct

Author:

Karakasis Marios K.1,Naylor Edward M. J.1,Miller Robert J.1,Hodson Howard P.1

Affiliation:

1. University of Cambridge, Cambridge, UK

Abstract

This paper considers the effect of an upstream compressor stage on a compressor inter-spool duct. The duct geometry must be fixed early in the engine design process, well before the design of the upstream stages. It is therefore important that the designer has a good physical insight into how engine representative inlet conditions affect the limits of the duct design space. An experimental and computational investigation of two strutted inter-spool S-ducts was undertaken. Both were tested with and without an upstream stage present. The first duct is of a conventional axisymmetric design with a radius change to length ratio ΔR/L = 0.50. This duct is characteristic of the most extreme ducts considered in modern engine design. The second duct is of a non-axisymmetric design and is 20% shorter, ΔR/L = 0.625. This is well beyond the design limit of axi-symmetric strutted ducts. The paper shows that the presence of the upstream stage increases the duct loss by 54%. The rise in loss occurs on the hub wall and is the result of the incoming stator wakes pooling onto the hub wall, forming a row of contra-rotating streamwise vortex pairs adjacent to the hub wall. These vortices pump boundary layer fluid into the free stream, thus raising the mixing loss. In the non-axisymmetric duct an extra mechanism was observed. The streamwise vortex pairs act to ‘re-energise’ the boundary layer. This reduces strut secondary losses caused by the endwall contouring. The net result is that on the non-axisymmetric duct the presence of an upstream stage only increases the duct loss by 28%. Comparing the two ducts, it is shown that with engine representative inlet conditions, the conventional symmetric duct and 20% shorter non-axisymmetric duct have identical performance. This shows that low loss ducts can be designed which are significantly more extreme than current design limits.

Publisher

ASMEDC

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3