Affiliation:
1. German Aerospace Center (DLR), Berlin, Germany
2. Berlin Institute of Technology, Berlin, Germany
Abstract
An experimemtal investigation in a high speed compressor cascade has been carried out to show the effect of different types of secondary flow suction. In order to get deeper insight into the separated three dimensional flow topology and to determine appropriate suction positions, numerical simulations are performed additionally for the baseline cascade. To obtain the flow solution, an implicit, pressure based solver, elaN3D (by ISTA TU Berlin), is employed in steady RANS mode, whereby the Menter SST-k model is used for turbulence treatment. Both investigations are conducted at Mach number Ma = 0.67 and Reynolds number Re = 560.000. The aerodynamic design condition is used. The examined cascade consists of NACA65-K48 type vanes. The experiments include measurements with four different types of suction geometries plus reference measurements. Total pressure and flow angle measurements in the wake show the flow deflection, total pressure loss and the rise of the static pressure of the cascade. The best suction geometry follows the design of R.E. Peacock, designed for low Mach number cascades, with small changes. Using a maximum suction rate of 2% of the main flow the total loss coefficient was reduced by 23%. In this case the stage efficiency — calculated with a reference rotor — is increased by almost 1%. The vacuum pump energy consumption has been taken into account for this calculation. In another case the suction geometry has been chosen in a way that the suction slot is placed along the sidewall from suction side to pressure side following the wall streamlines. With an increased suction rate of 5% of the main flow, the vortex system in the passage is eliminated and the total loss coefficient is decreased to 0.055, which equals to a decrease of 37%. Taking into account that compressors in aero-engines provide bleed air for the plane’s air system, enormous efficiency increase is possible. For this the air bleed valves need to be redesigned.
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献