3D Printed Magnetorheological Elastomers

Author:

Bastola Anil K.1,Paudel Milan1,Li Lin1

Affiliation:

1. Nanyang Technological University, Singapore, Singapore

Abstract

In this study, 3D printed magnetorheological (MR) elastomer has been characterized through a force vibration testing. The 3D printed MR elastomer is a composite consisting three different materials, magnetic particles and two different elastomers. The MR elastomers were printed layer-by-layer by encapsulating MR fluid within the polymeric elastomer and then allowed to cure at room temperature. The 3D printing allowed to print various patterns of magnetic particles within the elastomeric matrix. In the presence of an external magnetic field, both elastic and damping properties of the 3D printed MR elastomers were changed. Natural frequency, stiffness, damping ratio, damping coefficient, and shear modulus were increased with increasing magnetic field. For the single degree-of-freedoms system, shear mode MR elastomers suppressed the transmitted vibration amplitude up to 31.4% when the magnetic field was 550 mT. The results showed that the 3D printed MR elastomer could be used as a tunable spring element for vibration absorption or isolation applications. However, further optimization of the magnetic particles’ configurations should be performed to obtain the higher MR effect.

Publisher

American Society of Mechanical Engineers

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3