Experimental and Computational Investigation of Flow Boiling in a 52 μm Hydraulic Diameter Microchannel Evaporator With Inlet Restrictions and Heat Spreading

Author:

Anderson Caleb1ORCID,Gao Zhaosheng2,Hanchak Michael3,Bandhauer Todd1

Affiliation:

1. REACH Co-Lab Colorado State University , 1374 Campus Delivery, Fort Collins, CO 80525-1374

2. Thermal Management Group Fuels & Combustion Division, University of Dayton Research Institute, 300 College Park , Dayton, OH 45469-0044

3. Thermal Management Group Fuels & Combustion Division, University of Dayton Research Institute , 300 College Park, Dayton 45469-0044, OH

Abstract

Abstract Microchannel flow boiling presents an effective thermal management strategy for high heat flux (>1 kW/cm2) devices. Fundamental mechanisms of microchannel flow boiling behaviors are difficult to determine due to macroscopic limitations of experimental hardware. In addition, flow stabilizing features of microchannel evaporators such as inlet restrictions and heat spreading further complicate fluid flow and heat transfer dynamics. Computational models, when utilized with experiments, can provide a more detailed understanding of behaviors which cannot be determined experimentally. The present study developed a computational model for flow boiling heat transfer in a 52 μm silicon microchannel evaporator designed to cool a laser diode bar, with inlet restrictions and a nonuniform heating profile at the channel level. A conjugate heat transfer model along with a coupled level set and volume of fluid (CLSVOF) model was created in ansysfluent and compared with experimental flow boiling data to gain further insights into the performance of a realistic microdevice. Heat spreading in the channel outside of the heater footprint was observed due to the high thermal conductivity of the silicon substrate. The inlet orifices impacted local flow patterns by creating a large pressure drop and forming a recirculation zone immediately downstream. This behavior resulted in pressure recovery zones and regions of separated flow boiling behavior. Bubbly, slug, and churn flows were seen to be dominant flow regimes. The heat transfer coefficient was found to be dependent on heat flux and flow regime, and more weakly on mass flux and outlet vapor quality.

Funder

Air Force Research Laboratory

Office of Naval Research

Publisher

ASME International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3