An Experimental Study of Shell-and-Tube Heat Exchangers With Continuous Helical Baffles

Author:

Peng B.1,Wang Q. W.1,Zhang C.2,Xie G. N.1,Luo L. Q.1,Chen Q. Y.1,Zeng M.1

Affiliation:

1. State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Shaanxi, Xi’an 710049, China

2. Department of Mechanical & Materials Engineering, University of Western Ontario, London, Ontario N6G 5B9, Canada

Abstract

Two shell-and-tube heat exchangers (STHXs) using continuous helical baffles instead of segmental baffles used in conventional STHXs were proposed, designed, and tested in this study. The two proposed STHXs have the same tube bundle but different shell configurations. The flow pattern in the shell side of the heat exchanger with continuous helical baffles was forced to be rotational and helical due to the geometry of the continuous helical baffles, which results in a significant increase in heat transfer coefficient per unit pressure drop in the heat exchanger. Properly designed continuous helical baffles can reduce fouling in the shell side and prevent the flow-induced vibration as well. The performance of the proposed STHXs was studied experimentally in this work. The heat transfer coefficient and pressure drop in the new STHXs were compared with those in the STHX with segmental baffles. The results indicate that the use of continuous helical baffles results in nearly 10% increase in heat transfer coefficient compared with that of conventional segmental baffles for the same shell-side pressure drop. Based on the experimental data, the nondimensional correlations for heat transfer coefficient and pressure drop were developed for the proposed continuous helical baffle heat exchangers with different shell configurations, which might be useful for industrial applications and further study of continuous helical baffle heat exchangers. This paper also presents a simple and feasible method to fabricate continuous helical baffles used for STHXs.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3